
Page 1

PGI and Cray Compiler
Optimization

Go to Menu

Page 2

Outline
• Introduction
• PGI® compilers

– Optimization-Related PGI Compiler Options
– Getting Started with PGI Compiler Optimizations
– Optimization Categories (Node Level Tuning)
– PGI Documentation and Support

• Cray X86 compilers
– Getting Started with Cray Compiler Optimizations
– Optimization Options
– Loopmark: Compiler Feedback
– Example: Cray loopmark messages for Resid
– Cray X86 Related Publications

• Resources for Users

Go to Menu

Page 3

Foreword

• Source code that is readable, maintainable, and produces
correct results is not always organized for efficient execution.
Normally, the first step in the program development process
involves producing code that executes and produces the
correct results. This first step usually involves compiling
without much worry about optimization. After code is
compiled and debugged, code optimization and parallelization
become an issue.

• Invoking one of the PGI/GNU/Intel/Cray/Pathscale compiler
commands with certain options instructs the compiler to
generate optimized code. Optimization is not always
performed since it increases compilation time and may make
debugging difficult. However, optimization produces more
efficient code that usually runs significantly faster than code
that is not optimized.

Go to Menu

Page 4

Outline: Introduction

Go to Menu

– Parallel Compiling on Jaguar

– System Parallel Compilers

– Wrappers and Compiling Tips

– System Serial Compilers

– Default Compilers

– MPI Codes

Page 5

Parallel Compiling on Jaguar

• Jaguar has two kinds of nodes:
– Compute Nodes running the CNL OS
– Service and login nodes running Linux

• To build a code for the compute nodes, you should use the Cray wrappers
cc, CC, and ftn. The wrappers will call the appropriate compiler which
will use the appropriate header files and link against the appropriate
libraries. Use of wrappers is crucial for building the parallel codes on Cray.

• We highly recommend that the cc, CC, and ftn wrappers be used when
building for the compute nodes! Both parallel and serial codes.

• To build a code for the Linux service nodes, you should call the compilers
directly.

• We strongly suggest that you don’t call the compilers directly if you are
building code to run on the compute nodes.

• No long serial jobs should be run on service nodes, use compute nodes
instead. Go to Menu

Page 6

System Parallel Compilers

Language Compiler

C cc

C++ CC

Fortran 77, 90 and 95 ftn

Go to Menu

The following compilers should be used to build codes on Jaguar!
Use these compilers

Note that cc, CC and ftn are actually the Cray XT Series wrappers for
invoking the PGI, GNU, Intel or Pathscale compilers (discussed later…)

Page 7

Wrappers and Compiling Tips

• Why to use wrappers to build (compile and link) the code:
– Automatically point to correct compiler based on modules

loaded
– Wrappers automatically find and include paths and libraries

of loaded modules (e.g., mpi, libsci)

• Use same makefile for all compilers*

• Calling base compilers directly (e.g., pgf90) results in serial
code that runs only on login nodes
– Not what you want! Use wrapper instead and run on

compute nodes
– Discourteous to other users to do production work on login

nodes
* Except compiler-specific flags Go to Menu

Page 8

System Serial Compilers

Go to Menu

• Available compilers:

– Portland Croup (PGI). Module name: PrgEnv-pgi


pgcc


pgCC


pgf90/pgf95


pgf77

– GNU. Module name: PrgEnv-gnu


gcc


g++


Gfortran

– Intel. Module name: PrgEnv-intel


icc (c/c++ codes)


ifort

– Cray compilers. Module name: PrgEnv-cray


craycc


crayCC


crayftn

– Pathscale. Module name: PrgEnv-pathscale


pathcc


pathCC


path90/pathf95 (only available if
gcc/4.2.1 or higher is loaded)

Note that the man pages for the system
compilers will only give the most basic
information, i.e.
%man cc
%man CC
%man ftn

The man pages with the specific compiler
options can be accessed by using the
names of the serial compilers on this slide:
%man pgcc
%man g++
%man crayftn

Page 9

Default Compilers
• Default compiler is PGI. The list of all packages is obtained by

– module avail PrgEnv

• To use the Cray wrappers with other compilers the programming
environment modules need to be swapped, i.e.
– module swap PrgEnv-pgi PrgEnv-gnu
– module swap PrgEnv-pgi PrgEnv-cray

• To just use the GNU/Cray compilers directly load the GNU/Cray
module you want:
– module load PrgEnv-gnu/2.1.50HD
– module load PrgEnv-cray/1.0.1

• It is possible to use the GNU compiler versions directly without
loading the Cray Programming Environments, but note that the Cray
wrappers will probably not work as expected if you do that.

Go to Menu

Page 10

MPI Codes

• All system compilers (PGI, GNU, Intel, Cray, Pathscale)
can handle MPI standard specification parallel codes
through the use of compiler wrappers (cc, ftn, CC)

• MPT – Cray’s MPI library
– Use latest MPT (3.1.x)

• Default settings are set based on the best performance
on most codes.
– Some codes may benefit from setting or adjusting the

environment variable settings.
• More information is available on man pages “man mpi”

Go to Menu

Page 11

Outline: PGI® compilers

Go to Menu

– Portland Group (PGI)

– List of the Compiler Option Categories

– PGI Basic Compiler Usage

– Flags to support language dialects

– Specifying the target architecture

– Flags for debugging aids

– Useful Compiler Flags

Page 12

Portland Group (PGI)

• Cray provides the Portland Group (PGI) compilers as

part of several programming environments on Jaguar.

• PGI compilers are loaded by default.

Go to Menu

http://www.pgroup.com/

Page 13

List of the Compiler Option Categories

• Overall Options
• Optimization Options (covered in this document)
• Debugging Options
• Preprocessor Options
• Assembler Options
• Linker Options
• Language Options
• Target-specific Options

Description of the following options is provided by PGI man
pages:

Go to Menu

Page 14

PGI Basic Compiler Usage

• A compiler driver interprets options and invokes pre-
processors, compilers, assembler, linker, etc.

• Options precedence: if options conflict, last option on
command line takes precedence

• Use -Minfo and -Mneginfo to see a listing of
optimizations and transformations performed by the
compiler

• Use -help to list all options or see details on how to use a
given option, e.g. pgf90 -Mvect -help

• Use man pages for more details on options, e.g. “man
pgf90”

• Use –v to see under the hood
Go to Menu

Page 15

Flags to support language dialects

• Fortran
– ftn
– Suffixes .f, .F, .for, .fpp, .f90, .F90, .f95, .F95
– -Mextend, -Mfixed, -Mfreeform
– Type size –i2, -i4, -i8, -r4, -r8, etc.
– -Mcray, -Mbyteswapio, -Mupcase, -Mnomain, -

Mrecursive, etc.
• C/C++

– cc, CC
– Suffixes .c, .C, .cc, .cpp, .i
– -B, -c89, -c9x, -Xa, -Xc, -Xs, -Xt
– -Msignextend, -Mfcon, -Msingle, -Muchar, -Mgccbugs

Go to Menu

Page 16

Specifying the target architecture

• -tp target - Specify the type of the target processor;
• The default in the absence of the -tp flag is to compile for the type

of CPU on which the compiler is running.
• The targets are:

-tp k8-64 - AMD Opteron or Athlon-64 in 64-bit mode.
-tp amd64e - AMD Opteron revision E or later, in 64-bit mode;

includes SSE3 instructions
-tp x64 - Single binary where each procedure is optimized for

the AMD Opteron in 64-bit mode; the selection of which
optimized copy to execute is made at run time depending on the
machine executing the code.

-tp k8-32,k7,p7,piv,piii,p6,p5,px for 32 bit code

Go to Menu

Page 17

Flags for debugging aids

• -g generates symbolic debug information used by a
debugger

• -gopt generates debug information in the presence of
optimization

• -Mbounds adds array bounds checking
• -v gives verbose output, useful for debugging system

or build problems
• -Minfo provides feedback on optimizations made by

the compiler
• -S or –Mkeepasm to see the exact assembly generated

Go to Menu

Page 18

Useful Compiler Flags

General

Flag Comments
-mp=nonuma Compile multithreaded

code using OpenMP
directives

Debugging

Go to Menu

Flag Comments
-g For debugging

symbols; put first
-Ktrap=fp Trap floating point

exceptions
-Mchkptr Checks for unintended

dereferencing of null
pointers

Page 19

Optimization-Related PGI Compiler Options

• The compilers optimize code according to the specified
optimization level. You can use a number of options to specify
the optimization levels, including –O, –Mvect, –Mipa, and –
Mconcur. In addition, you can use several of the –M<pgflag>
switches to control specific types of optimization and
parallelization.

• The optimization options are:

–fast –Minline –Mpfi –Mvect

–Mconcur –Mipa=fast –Mpfo –O

–Minfo –Mneginfo –Munroll –Msafeptr
Go to Menu

Page 20

Optimization-Related PGI Compiler Options (continued)

Option Description
–fast Generally optimal set of flags for targets that support SSE

capability.
–fastsse Generally optimal set of flags for targets that include SSE/SSE2

capability.
–M<pgflag> Selects variations for code generation and optimization.
–mp[=all,
align, bind,
[no]numa]

Interpret and process user-inserted shared-memory parallel
programming directives.

–O<level> Specifies code optimization level where <level> is 0, 1, 2, 3, or 4.
–pc <val> (–tp px/p5/p6/piii targets only) Set precision globally for x87

floating-point calculations; must be used when compiling the main
program. <val> may be one of 32, 64 or 80.

–Mprof=time Instrument the generated executable to produce a gprof-style

Go to Menu

Page 21

Optimization-Related PGI Compiler Options (continued)

• Traditional optimization controlled through -O[<n>], n is 0 to 4.
• -fastsse and -fast are equal to -O2 -Munroll=c:1 -Mnoframe –

Mlre -Mvect=sse, -Mscalarsse -Mcache_align -Mflushz
– For -Munroll, c specifies completely unroll loops with this loop count or

less
– -Munroll=n:<m> says unroll other loops m times

• -Mcache_align aligns top level arrays and objects on cache-line
boundaries

• -Mflushz flushes SSE denormal numbers to zero
• -Mnoframe does not set up a stack frame
• -Mlre is loop-carried redundancy elimination

Go to Menu

Page 22

Outline: Getting Started with PGI Compiler Optimizations

– Quick Start

– Options for Getting Help

– Options for Getting Information

– Common Performance Challenges

– What is Vectorization on x64 CPUs?

– Optimization Strategies

Go to Menu

Page 23

Quick Start

• To get started quickly with optimization, a good set of options to use with
any of the PGI compilers is –fast –Mipa=fast. For example:

$ ftn -fast -Mipa=fast prog.f

• For all of the PGI Fortran, C, and C++ compilers, the –fast –Mipa=fast
options generally produce code that is well-optimized without the
possibility of significant slowdowns due to pathological cases.

– The –fast option is an aggregate option that includes a number of
individual PGI compiler options; which PGI compiler options are
included depends on the target for which compilation is performed.

– The –Mipa=fast option invokes interprocedural analysis including
several IPA suboptions.

– For C++ programs, add -Minline=levels:10 --no_exceptions as
shown here:

$ CC -fast -Mipa=fast -Minline=levels:10 --no_exceptions prog.cc
Go to Menu

Page 24

-help and -Minfo
–help

– You can see a specification of any command line option by invoking any of the
PGI compilers with -help in combination with the option in question, without
specifying any input files. For example, you might want information on -O:

– $ pgf95 -help –O
– Or you can see the full functionality of -help itself, which can return

information on either an individual option or groups of options:
– $ pgf95 -help –help

–Minfo
– Used to display compile-time optimization listings.
– When this option is used, the PGI compilers issue informational messages to

stderr as compilation proceeds. From these messages, you can determine which
loops are

• optimized using unrolling,
• SSE instructions,
• vectorization,
• parallelization,
• interprocedural optimizations
• various miscellaneous optimizations.
• you can also see where and whether functions are inlined. Go to Menu

Page 25

–Mneginfo and –dryrun

–Mneginfo
– Used to display informational messages listing why certain

optimizations are inhibited.

–dryrun
– Can be useful as a diagnostic tool if you need to see the

steps used by the compiler driver to preprocess, compile,
assemble and link in the presence of a given set of
command line inputs.

– If –dryrun option is specified, these steps will be printed to
stderr but are not actually performed.

– For example, you can use this option to inspect the default
and user-specified libraries that are searched during the link
phase, and the order in which they are searched by the
linker.

Go to Menu

Page 26

Common Performance Challenges

• Vectorization
– What is vectorization? Is my code vectorizing?
– Conflicts with C++ and F90 “ease of use”

programming techniques. C and C++ pointer
issues that prevent vectorization.

• Multi-core issues
– Memory bandwidth
– MPI, OpenMP, and auto parallelization

• IPA – Interproceedural Analysis and Inlining
– IPA and inline enabled libraries

Go to Menu

Page 27

What is Vectorization on x64 CPUs?

• By a Programmer: writing or modifying algorithms and
loops to enable or maximize generation of x64 packed
Streaming SIMD Extensions (SSE) instructions by a
vectorizing compiler

• By a Compiler: identifying and transforming loops to
use packed SSE arithmetic instructions which operate on
more than one data element per instruction

• For more information, please, refer to the “Software
Optimization Guide for AMD64 Processors” at
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF

Go to Menu

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF

Page 28

Optimization Strategies

• Establish a workload

• Optimization from the top-down

• Use of proper tools, methods

• Processor level optimizations, parallel methods

• Different flags/features for different types of code

Go to Menu

Page 29

Outline: Optimization Categories (Node Level Tuning)

Go to Menu

– Local and Global Optimization

– Vectorization

– Interprocedural Analysis (IPA)

– Function Inlining

– SMP Parallelization

– Miscellaneous Optimizations

Page 30

Local and Global Optimization

Go to Menu

Page 31

Local Optimization

• This optimization is performed on a block-by-block basis
within a program’s basic blocks. A basic block is a sequence
of statements in which the flow of control enters at the
beginning and leaves at the end without the possibility of
branching, except at the end.

• The PGI compilers perform many types of local optimization
including:
– algebraic identity removal,
– constant folding,
– common sub-expression elimination,
– redundant load and store elimination,
– scheduling,
– strength reduction,
– peephole optimizations.

Go to Menu

Page 32

Global Optimization

• This optimization is performed on a program unit
over all its basic blocks. The optimizer performs
control-flow and data-flow analysis for an entire
program unit. All loops, including those formed by
IFs and GOTOs, are detected and optimized.

• Global optimization includes:
– constant propagation,
– copy propagation,
– dead store elimination,
– global register allocation,
– invariant code motion,
– induction variable elimination.

Go to Menu

Page 33

Local and Global Optimization using –O

Using the PGI compiler commands with the –Olevel option (the capital O
is for Optimize), you can specify any of the following optimization levels:

–O0 Level zero specifies no optimization. A basic block is generated for each
language statement.

–O1 Level one specifies local optimization. Scheduling of basic blocks is
performed. Register allocation is performed.

–O2 Level two specifies global optimization. This level performs all level-one
local optimization as well as level two global optimization. If optimization
is specified on the command line without a level, level 2 is the default.

–O3 Level three specifies aggressive global optimization. This level performs
all level-one and level-two optimizations and enables more aggressive
hoisting and scalar replacement optimizations that may or may not be
profitable.

–O4 Level four performs all level-one, level-two, and level-three optimizations
and enables hoisting of guarded invariant floating point expressions.

Note: If you use the –O option to specify optimization and do not specify a level,
then level-two optimization (–O2) is the default. Go to Menu

Page 34

Local and Global Optimization using –O (continued)

• You can explicitly select the optimization level on the command line. For
example, the following command line specifies level-two optimization
which results in global optimization:

• $ pgf95 -O2 prog.f
• Specifying –O on the command-line without a level designation is

equivalent to –O2. The default optimization level changes depending on
which options you select on the command line. For example, when you
select the –g debugging option, the default optimization level is set to level-
zero (–O0). However, if you need to debug optimized code, you can use the
-gopt option to generate debug information without perturbing
optimization.

• As noted previously, the –fast option includes –O2 on all x86 and x64
targets. If you want to override the default for–fast with –O3 while
maintaining all other elements of –fast, simply compile as follows:

• $ pgf95 -fast -O3 prog.f
Go to Menu

Page 35

Vectorization

Go to Menu

Page 36

Loop Optimization: Unrolling, Vectorization, and Parallelization

• The performance of certain classes of loops may be
improved through vectorization or unrolling options.
– Vectorization transforms loops to improve memory access

performance and make use of packed SSE instructions
which perform the same operation on multiple data items
concurrently.

– Unrolling replicates the body of loops to reduce loop
branching overhead and provide better opportunities for
local optimization, vectorization and scheduling of
instructions.

• Performance for loops on systems with multiple
processors may also improve using the parallelization
features of the PGI compilers.

Go to Menu

Page 37

Vectorizable F90 Array Syntax Data is REAL*4
350 !
351 ! Initialize vertex, similarity and coordinate arrays
352 !
353 Do Index = 1, NodeCount
354 IX = MOD (Index - 1, NodesX) + 1
355 IY = ((Index - 1) / NodesX) + 1
356 CoordX (IX, IY) = Position (1) + (IX - 1) * StepX
357 CoordY (IX, IY) = Position (2) + (IY - 1) * StepY
358 JetSim (Index) = SUM (Graph (:, :, Index) * &
359 & GaborTrafo (:, :, CoordX(IX,IY), CoordY(IX,IY)))
360 VertexX (Index) = MOD (Params%Graph%RandomIndex (Index) - 1, NodesX) + 1
361 VertexY (Index) = ((Params%Graph%RandomIndex (Index) - 1) / NodesX) + 1
362 End Do

Inner “loop” at line 358 is vectorizable, can used packed SSE instructions

Go to Menu

Page 38

–fastsse –Minfo

% pgf95 -fastsse -Mipa=fast -Minfo -S graphRoutines.f90
…
localmove:

334, Loop unrolled 1 times (completely unrolled)
343, Loop unrolled 2 times (completely unrolled)
358, Generated an alternate loop for the inner loop

Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop
Generated vector sse code for inner loop
Generated 2 prefetch instructions for this loop

…

–fastsse to Enable SSE Vectorization
–Minfo to List Optimizations to stderr

Go to Menu

Page 39

Scalar SSE: Vector SSE:

Facerec Scalar: 104.2 sec
Facerec Vector: 84.3 sec

.LB6_668:
lineno: 358

movss -12(%rax),%xmm2
movss -4(%rax),%xmm3
subl $1,%edx
mulss -12(%rcx),%xmm2
addss %xmm0,%xmm2
mulss -4(%rcx),%xmm3
movss -8(%rax),%xmm0
mulss -8(%rcx),%xmm0
addss %xmm0,%xmm2
movss (%rax),%xmm0
addq $16,%rax
addss %xmm3,%xmm2
mulss (%rcx),%xmm0
addq $16,%rcx
testl %edx,%edx
addss %xmm0,%xmm2
movaps %xmm2,%xmm0
jg .LB6_625

.LB6_1245:
lineno: 358

movlps (%rdx,%rcx),%xmm2
subl $8,%eax
movlps 16(%rcx,%rdx),%xmm3
prefetcht0 64(%rcx,%rsi)
prefetcht0 64(%rcx,%rdx)
movhps 8(%rcx,%rdx),%xmm2
mulps (%rsi,%rcx),%xmm2
movhps 24(%rcx,%rdx),%xmm3
addps %xmm2,%xmm0
mulps 16(%rcx,%rsi),%xmm3
addq $32,%rcx
testl %eax,%eax
addps %xmm3,%xmm0
jg .LB6_1245:

Scalar SSE vs. Vector SSE

Go to Menu

Page 40

Vectorizable C Code Fragment?

217 void func4(float *u1, float *u2, float *u3, …
…

221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

% pgcc –fastsse –Minfo functions.c
func4:

221, Loop unrolled 4 times
221, Loop not vectorized due to data dependency
223, Loop not vectorized due to data dependency

Go to Menu

Page 41

Pointer Arguments Inhibit Vectorization

217 void func4(float *u1, float *u2, float *u3, …
…

221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

% pgcc –fastsse –Msafeptr –Minfo functions.c
func4:

221, Generated vector SSE code for inner loop
Generated 3 prefetch instructions for this loop

223, Unrolled inner loop 4 times
Go to Menu

Page 42

C Constant Inhibits Vectorization

217 void func4(float *u1, float *u2, float *u3, …
…

221 for (i = -NE+1, p1 = u2-ny, p2 = n2+ny; i < nx+NE-1; i++)
222 u3[i] += clz * (p1[i] + p2[i]);
223 for (i = -NI+1, i < nx+NE-1; i++) {
224 float vdt = v[i] * dt;
225 u3[i] = 2.*u2[i]-u1[i]+vdt*vdt*u3[i];
226 }

% pgcc –fastsse –Msafeptr –Mfcon –Minfo functions.c
func4:

221, Generated vector SSE code for inner loop
Generated 3 prefetch instructions for this loop

223, Generated vector SSE code for inner loop
Generated 4 prefetch instructions for this loop Go to Menu

Page 43

-Msafeptr Option and Pragma

#pragma [scope] [no]safeptr={arg | local | global | static | all},…

Where scope is global, routine or loop

–M[no]safeptr[=all | arg | auto | dummy | local | static | global]

all all pointers are safe
arg argument pointers are safe
local local pointers are safe
static static local pointers are safe
global global pointers are safe

Go to Menu

Page 44

Common Barriers to SSE Vectorization

Potential Dependencies & C Pointers – Give compiler more
info with –Msafeptr, pragmas, or restrict type qualifer

Function Calls – Try inlining with –Minline or –Mipa=inline

Type conversions – manually convert constants or use flags

Too few iterations – Usually better to unroll the loop

Real dependencies – Must restructure loop, if possible

Go to Menu

Page 45

Barriers to Efficient Execution of Vector SSE Loops

• Not enough work – vectors are too short

• Vectors not aligned to a cache line boundary

• Non-unity strides

• May run out of space to handle all the
instructions

• Code bloat if altcode is generated
Go to Menu

Page 46

Interprocedural Analysis (IPA)

Go to Menu

Page 47

Interprocedural Analysis (IPA) and Optimization

• Interprocedural analysis (IPA) allows use of information across function call
boundaries to perform optimizations that would otherwise be unavailable. For
example, if the actual argument to a function is in fact a constant in the caller, it
may be possible to propagate that constant into the callee and perform
optimizations that are not valid if the dummy argument is treated as a variable.

• A wide range of optimizations are enabled or improved by using IPA, including but
not limited to
– data alignment optimizations,
– argument removal,
– constant propagation,
– pointer disambiguation,
– pure function detection,
– F90/F95 array shape propagation,
– data placement,
– vestigial function removal,
– automatic function inlining,
– inlining of functions from pre-compiled libraries,
– interprocedural optimization of functions from pre-compiled libraries.

Go to Menu

Page 48

What can Interprocedural Analysis and Optimization with –Mipa do for You?

• Interprocedural constant propagation

• Pointer disambiguation

• Alignment detection, Alignment propagation

• Global variable mod/ref detection

• F90 shape propagation

• Function inlining

Go to Menu

Page 49

Effect of IPA on the WUPWISE Benchmark

• –Mipa=fast => constant propagation => compiler sees
complex matrices are all 4x3 => completely unrolls loops

• –Mipa=fast,inline => small matrix multiplies are all inlined

PGF95 Compiler Options Execution Time in
Seconds

–fastsse 156.49
–fastsse –Mipa=fast 121.65
–fastsse –Mipa=fast,inline 91.72

Go to Menu

Page 50

Using Interprocedural Analysis

• Must be used at both compile time and link time

• Non-disruptive to development process – edit/build/run

• Speed-ups of 5% - 10% are common

• –Mipa=safe:<name> - safe to optimize functions which call

or are called from unknown function/library name

• –Mipa=libopt – perform IPA optimizations on libraries

• –Mipa=libinline – perform IPA inlining from libraries

Go to Menu

Page 51

Function Inlining

Go to Menu

Page 52

Function Inlining

• This optimization allows a call to a function to
be replaced by a copy of the body of that
function. This optimization will sometimes
speed up execution by eliminating the function
call and return overhead.

• Function inlining may also create opportunities
for other types of optimization.

• Function inlining is not always beneficial.
• When used improperly it may increase code

size and generate less efficient code.
Go to Menu

Page 53

Explicit Function Inlining

–Minline[=[lib:]<inlib> | [name:]<func> | except:<func> |
size:<n> | levels:<n>]

[lib:]<inlib> Inline extracted functions from inlib
[name:]<func> Inline function func
except:<func> Do not inline function func
size:<n> Inline only functions smaller than n

statements (approximate)
levels:<n> Inline n levels of functions

For C++ Codes, PGI Recommends IPA-based
inlining or –Minline=levels:10!

Go to Menu

Page 54

Specific recommendations for C++

• Encapsulation; Data hiding
– small functions, inline!

• Exception handling
– use –no_exceptions until 7.0

• Overloaded operators, overloaded functions
– Can be used

• Pointer Chasing
– -Msafeptr, restrict qualifier

• Templates, Generic Programming
– Can be used. However, aggressive use of templates may still run into

problems
• Inheritance, polymorphism, virtual functions

– runtime lookup or check, no inlining, potential performance penalties

Go to Menu

Page 55

SMP Parallelization

Go to Menu

Page 56

SMP - Shared-Memory Parallel

• The PGI compilers support two styles of SMP parallel
programming:
– Automatic shared-memory parallel programs compiled using

the –Mconcur option to pgf77, pgf95, pgcc, or pgcpp -
parallel programs of this variety can be run on shared-memory
parallel (SMP) systems such as dual-core or multi-processor
workstations.

– OpenMP shared-memory parallel programs compiled using the
–mp option to pgf77, pgf95, pgcc, or pgcpp - parallel programs
of this variety can be run on SMP systems. Carefully coded
user-directed parallel programs using OpenMP directives can
often achieve significant speed-ups on dual-core workstations
or large numbers of processors on SMP server systems.

• OpenMP parallel programs can only work within one node. Go to Menu

Page 57

SMP Parallelization

• Use –mp to enable OpenMP parallel programming model

• OpenMP programs compiled without –mp option will still work ignoring
OpenMP-related lines in the code.

• Caution: Yes, they work, but they may not give the best performance. For
example, a programmer still may need to analyze and rewrite the loop.

• See PGI User’s Guide at

– http://www.pgroup.com/doc/pgiug.pdf , or

• OpenMP Specifications/Documentation at

– http://openmp.org/wp/openmp-specifications/

• OpenMP tutorial from LLNL

– https://computing.llnl.gov/tutorials/openMP/
Go to Menu

http://www.pgroup.com/doc/pgiug.pdf
http://openmp.org/wp/openmp-specifications/
https://computing.llnl.gov/tutorials/openMP/

Page 58

Calculation of Overhead
• The set of microbenchmarks can be used to measure the overheads of synchronization,

loop scheduling and array operations in the OpenMP runtime library:
– http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html

• Synchronization benchmark measures the overhead incurred by the following directives,
all of which contain barrier synchronization: PARALLEL(with and without a
REDUCTION clause), DO/for, PARALLEL DO/parallel for, BARRIER, SINGLE.

• To measure the overhead of the PARALLEL directive, for example, the time taken for
overhead computed as (mean) difference in execution time:

do i=1,reps
call dummy()

end do

is subtracted from the time taken for
do i=1,reps

!$OMP PARALLEL
call dummy()

!$OMP END PARALLEL

end do
Go to Menu

http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html

Page 59

Calculation of Overhead (continued)

• The array benchmark compares the overheads associated with various Data Scope
Attribute Clauses when applied to arrays. The clauses considered are: PRIVATE,
FIRSTPRIVATE, COPYPRIVATE, COPYIN and REDUCTION. The variation of
overheads with array size is examined.

• To measure the overhead of the COPYIN array directive, for example, the time
taken for

do i=1,reps
call dummy(a)

end do
is subtracted from the time taken for

do i=1,reps
!$OMP PARALLEL COPYIN(a)

call dummy(a)
!$OMP END PARALLEL
end do

where dummy is a routine which contains a dummy loop performing simple
operations on the array a. For the COPYIN and COPYPRIVATE clauses, the array
passed to dummy must be declared as THREADPRIVATE.

Go to Menu

Page 60

Synchronization benchmark (Cray XT5)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Number of Processors (one thread per processor)

O
ve

rh
ea

d
(M

ic
ro

se
co

nd
s)

PARALLEL
FOR
PARALLEL FOR
PARALLEL+REDUCTION
BARRIER
SINGLE

Note:
• PARALLEL directive line is located behind PARALLEL FOR
• FOR directive line is located behind BARRIER Go to Menu

Page 61

Array benchmark – Two Threads (Cray XT5)

0

5

10

15

20

25

30

35

40

1 10 100 1000 10000 100000
Array Size

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

PRIVATE
FIRSTPRIVATE
COPYIN

Go to Menu

Page 62

Array benchmark – Array of Size a[1] (Cray XT5)

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

Number of Processors (one thread per processor)

O
ve

rh
ea

d
(m

ic
ro

se
co

nd
s)

PRIVATE
FIRSTPRIVATE
COPYIN

Note:
• PRIVATE clause line is located behind FIRSTPRIVATE

Go to Menu

Page 63

Miscellaneous Optimizations

Go to Menu

Page 64

Profile-Feedback Optimization (PFO)

• Profile-feedback optimization (PFO) makes use of information
from a trace file produced by specially instrumented
executables which capture and save information on
– branch frequency,
– function and subroutine call frequency,
– semi-invariant values,
– loop index ranges,
– other input data dependent information that can only be collected

dynamically during execution of a program.
• By definition, use of profile-feedback optimization is a two-

phase process: compilation and execution of a specially-
instrumented executable, followed by a subsequent
compilation which reads a trace file generated during the first
phase and uses the information in that trace file to guide
compiler optimizations.

Go to Menu

Page 65

Miscellaneous Optimizations

• –Mfprelaxed
– single-precision sqrt, rsqrt, div performed using reduced-

precision reciprocal approximation.
– Caution: This should only be used if the code can tolerate a loss

of precision (2-3 decimal points)
• –Mprefetch=d:<p>,n:<q>

– control prefetching distance, max number of prefetch
instructions per loop

• –M[no]movnt
– disable / force non-temporal moves

• –V[version]
– to switch between PGI releases at file level

• –Mvect=noaltcode
– disable multiple versions of loops

Go to Menu

Page 66

PGI Documentation and Support

• The Portland Group website

– http://www.pgroup.com/

• PGI provided documentation

– http://www.pgroup.com/resources/docs.htm

• PGI User Forums

– https://www.pgroup.com/userforum/index.php

• PGI FAQs, Tips & Techniques pages

Go to Menu

http://www.pgroup.com/
http://www.pgroup.com/resources/docs.htm
https://www.pgroup.com/userforum/index.php

Page 67

Cray X86 compilers

• Cray provides its own Cray X86 high-performance compiler

set as part of several programming environments on Jaguar.

• To switch to Cray X86 compilers from PGI compilers loaded

by default, please, refer to the Introduction section of this

document.

Go to Menu

http://www.pgroup.com/

Page 68

Outline: Getting Started with Cray Compiler Optimizations

– Quick Start

– Directives

– Current Strengths

Go to Menu

Page 69

Quick Start

• Make sure it is available
– module avail PrgEnv-cray

• To access the Cray compiler
– module load PrgEnv-cray

• To target the various chips
– module load xtpe-barcelona,shanghi,istanbul]

• Once you have loaded the module “cc” and “ftn” are
the Cray compilers
– Recommend just using default options
– Use –rm (fortran) and –hlist=m (C) to find out what

happened
• Example: ftn –rm –c file.f90

Go to Menu

Page 70

Directives

• Cray compiler supports a full and growing set of
directives and pragmas
– !dir$ concurrent
– !dir$ ivdep
– !dir$ interchange
– !dir$ unroll
– !dir$ loop_info [max_trips] [cache_na] ... Many more
– !dir$ blockable

• man directives
• man loop_info

Go to Menu

Page 71

Current Strengths

• Loop Based Optimizations
– Vectorization
– Interchange
– Pattern Matching
– Cache blocking/ non-temporal / prefetching

• Fortran Standard
• PGAS (UPC and Co-Array Fortran)
• Optimization Feedback: Loopmark
• Focus

Go to Menu

Page 72

Outline: Optimization Options

Go to Menu

– General Optimization Options

– Automatic Cache Management Options

– Vector Optimization Options

– Inlining Optimization Options

– Scalar Optimization Options

– Math Options

– Floating-point Optimization Levels

Page 73

General Optimization Options

-O level

Default: Equivalent to the appropriate -h option except that -O3 is
equivalent to -h cache2

The -O level option specifies the optimization level for a group of compiler
features. Specifying -O with no argument is the same as not specifying the -
O option; this syntax is supported for compatibility with other vendors.

A value of 0, 1, 2, or 3 sets that level of optimization for each of the -h
scalarn and -h vectorn options.

The -O values of 0, 1, 2, or 3 set that level of optimization for -h cachen
options, except that -O3 is equivalent to -h cache2.

The -O2 option is equivalent to ipa2, scalar2, vector2, cache2, and thread2.

Optimization features specified by -O are equivalent to the -h options(-h
cachen; -h vectorn -h scalarn) discussed below

Go to Menu

Page 74

General Optimization Options (continued)

-h [no]aggress

Default: -h noaggress
The -h aggress option provides greater opportunity to optimize loops that would
otherwise by inhibited from optimization due to an internal compiler size limitation.
-h noaggress leaves this size limitation in effect.
With -h aggress, internal compiler tables are expanded to accommodate larger loop
bodies. This option can increase the compilation's time and memory size.

-h [no]autothread

Default: -h noautothread
The -h [no]autothread option enables or disables automatic threading.

-h display_opt

The -h display_opt option displays the current optimization settings for this
compilation.

-h [no]dwarf

Default: -h dwarf
The -h [no]dwarf option controls whether DWARF debugging information is
generated during compilation.

Go to Menu

Page 75

General Optimization Options (continued)

-h fusionn

Default: -h fusion2
The –h fusionn option controls loop fusion and changes the assertiveness of the
fusion pragma. Loop fusion can improve the performance of loops, although in rare
cases it may degrade performance. The n argument allows you to turn loop fusion
on or off and determine where fusion should occur.

Note: Loop fusion is disabled when the scalar level is set to 0.
The values for n are:
0 No fusion (ignore all fusion pragmas and do not attempt to fuse other loops)
1 Attempt to fuse loops that are marked by the fusion pragma.
2 Attempt to fuse all loops (includes array syntax implied loops), except those
marked with the nofusion pragma.

-h [no]intrinsics

Default: -h intrinsics
The -h intrinsics option allows the use of intrinsic hardware functions, which allow
direct access to some hardware instructions or generate inline code for some
functions. This option has no effect on specially handled library functions.

Go to Menu

Page 76

General Optimization Options (continued)

-h list
The -h list=opt option allows you to create listings and control their formats. The
listings are written to source_file_name_without_suffix.lst. The values for opt are:

a Use all list options; source_file_name_without_suffix.lst includes a summary report,
an options report, and the source listing.

d Decompiles (translates) the intermediate representation of the compiler into listings
that resemble the format of the source code. This is performed twice, resulting in
two output files, at different points during the optimization process. You can use
these files to examine the restructuring and optimization changes made by the
compiler, which can lead to insights about changes you can make to your source
code to improve its performance.

e Expand include files.
Note: Using this option may result in a very large listing file. All system include
files are also expanded.

i Intersperse optimization messages within the source listing rather than at the end.
m Create loopmark listing; source_file_name_without_suffix.lst includes summary

report and source listing.
s Create a complete source listing (include files not expanded). Using -h list=m

creates a loopmark listing. The e, i, s, and w options provide additional listing
features. Using -h list=a combines all options.

Go to Menu

Page 77

General Optimization Options (continued)
-h [no]msgs

Default: -h nomsgs
The -h msgs option causes the compiler to write optimization messages to stderr. When the -h
msgs option is in effect, you may request that a listing be produced so that you can see the
optimization messages in the listing.

-h [no]negmsgs
Default: -h nonegmsgs
The -h negmsgs option causes the compiler to generate messages to stderr that indicate why
optimizations such as vectorization or inlining did not occur in a given instance. The -h
negmsgs option enables the -h msgs option. The -h list=a option enables the -h negmsgs
option.

-h [no]omp_trace
Default: -h noomp_trace (tracing is off)
The -h [no]omp_trace option turns the insertion of the CrayPat OpenMP tracing calls on or
off.

-h [no]func_trace
The -h func_trace option is for use only with CrayPat. If this option is specified, the compiler
inserts CrayPat trace entry points into each function in the compiled source file. The names of
the trace entry points are:
• __pat_tp_func_entry
• __pat_tp_func_return
These are resolved by CrayPat when the program is instrumented using the pat_build
command. When the instrumented program is executed and it encounters either of these trace
entry points, CrayPat captures the address of the current function and its return address. Go to Menu

Page 78

General Optimization Options (continued)

-h [no]overindex
Default: -h nooverindex
The -h overindex option declares that there are array subscripts that index a dimension of an
array that is outside the declared bounds of that array. The -h nooverindex option declares that
there are no array subscripts that index a dimension of an array that is outside the declared
bounds of that array.

-h [no]pattern
Default: -h pattern
The -h [no]pattern option globally enables or disables pattern matching. When the compiler
recognizes certain patterns in the source code, it replaces the construct with a call to an
optimized library routine. A loop or statement that has been pattern matched and replaced
with a call to a library routine is indicated with an A in the loopmark listing.
Note: Pattern matching is not always worthwhile. If there is a small amount of work in the
pattern-matched construct, the call overhead may outweigh the time saved by using the
optimized library routine. When compiling using the default optimization settings, the
compiler attempts to determine whether each given candidate for pattern matching will in fact
yield improved performance.

-h profile_generate
The -h profile_generate option directs that the source code be instrumented for gathering
profile information. The compiler inserts calls and data-gathering instructions to allow
CrayPat to gather information about the loops in a compilation unit. If you use this option,
you must run CrayPat on the resulting executable so the CrayPat data-gathering routines are
linked in.

Go to Menu

Page 79

General Optimization Options (continued)

-h threadn
Default: –h thread2
The -h threadn options control the optimization of both OpenMP and automatic threading.
The values of n are:

0 No autothreading or OMP (OpenMP) threading.
1 No parallel region expansion, no loop restructuring for OMP loops, no optimization across

OMP constructs.
2 Parallel region expansion, limited loop restructuring, optimization across OMP constructs.
3 Reduction results may not be repeatable. Loop restructuring, including modifying iteration

space for static schedules (breaking standard compliance).
-h unrolln

Default: –h unroll2
The -h unrolln option globally controls loop unrolling and changes the assertiveness of the
unroll pragma. By default, the compiler attempts to unroll all loops, unless the nounroll
pragma is specified for a loop. Generally, unrolling loops increases single processor
performance at the cost of increased compile time and code size. The n argument allows you
to turn loop unrolling on or off and specify where unrolling should occur. It also affects the
assertiveness of the unroll pragma. The values for n are:

0 No unrolling (ignore all unroll pragmas and do not attempt to unroll other loops).
1 Attempt to unroll loops that are marked by the unroll pragma.
2 Unroll loops when performance is expected to improve. Loops marked with the unroll or

nounroll pragma override automatic unrolling.
Note: Loop unrolling is disabled when the scalar level is set to 0. Go to Menu

Page 80

Automatic Cache Management Options
-h cachen

Default: -h cache2
The -h cachen option specifies the levels of automatic cache management to perform. The
default is -h cache2. The values for n are:

0 Cache blocking (including directive-based blocking) is turned off. This level is compatible with
all scalar and vector optimization levels.

1 Conservative automatic cache management. Characteristics include moderate compile time.
Symbols are placed in the cache when the possibility of cache reuse exists and the predicted
cache footprint of the symbol in isolation is small enough to experience the reuse.

2 Moderately aggressive automatic cache management. Characteristics include moderate compile
time. Symbols are placed in the cache when the possibility of cache reuse exists and the
predicted state of the cache model is such that the symbol will experience the reuse.

3 Aggressive automatic cache management. Characteristics include potentially high compile time.
Symbols are placed in the cache when the possibility of cache reuse exists and the allocation of
the symbol to the cache is predicted to increase the number of cache hits.

-O Option Cache Level
-O0 -h cache0

-O1 -h cache1

-O2 -h cache2 Go to Menu

Page 81

Vector Optimization Options

-h vectorn

Default: -h vector2
The -h vectorn option specifies the level of automatic vectorizing to be performed.
Vectorization results in significant performance improvements with a small increase in object
code size. Vectorization directives are unaffected by this option. The values of n are:

n Description
0 No automatic vectorization. Characteristics include low compile time and small compile size.

This option is compatible with all scalar optimization levels.
1 Specifies conservative vectorization. Characteristics include moderate compile time and size.

No loop nests are restructured; only inner loops are vectorized. No vectorizations that might
create false exceptions are performed. Results may differ slightly from results obtained when
-h vector0 is specified because of vector reductions. The -h vector1 option is compatible with
-h scalar1, -h scalar2, and -h scalar3.

2 Specifies moderate vectorization. Characteristics include moderate compile time and size.
Loop nests are restructured. The -h vector2 option is compatible with -h scalar2 and -h
scalar3.

3 Specifies aggressive vectorization. Characteristics include potentially high compile time and
size. Loop nests are restructured. Vectorizations that might create false exceptions in rare
cases may be performed.

Go to Menu

Page 82

Inlining Optimization Options
-h ipan

Default: -h ipa3
The -h ipan option allows the compiler to automatically decide which procedures to consider
for inlining. Procedures that are potential targets for inline expansion include all the
procedures within the input file to the compilation. Table below explains what is inlined at
each level.

Inlining
level Description

0 All inlining is disabled. All inlining compiler directives are ignored.

1 Directive inlining. Inlining is attempted for call sites and routines that are under the control of
an inlining pragma directive.

2
Call nest inlining. Inline a call nest to an arbitrary depth as long as the nest does not exceed
some compiler-determined threshold. A call nest can be a leaf routine. The expansion of the
call nest must yield straight-line code (code containing no external calls) for any expansion to
occur.

3 Constant actual argument inlining. This includes levels 1 and 2, plus any call site that contains
a constant actual argument. This is the default inlining level.

4
Tiny routine inlining plus cloning. This includes levels 1, 2, and 3, plus the inlining of very
small routines, regardless of where those routines fall in the call graph. The lower limit
threshold is an internal compiler parameter. Also, routine cloning is attempted if inlining fails
at a given call site.

Go to Menu

Page 83

Inlining Optimization Options (continued)

-h ipafrom=source [source] ...

The -h ipafrom=source [:source] option allows you to explicitly indicate
the procedures to consider for inline expansion. The source arguments
identify each file or directory that contains the routines to consider for
inlining. Whenever a call is encountered in the input program that matches
a routine in source, inlining is attempted for that call site.

Note: Spaces are not allowed on either side of the equal sign.

All inlining directives are recognized with explicit inlining. For information
about inlining directives, see Inlining Directives on page 89.

Note: The routines in source are not actually loaded with the final program.
They are simply templates for the inliner. To have a routine contained in
source loaded with the program, you must include it in an input file to the
compilation.

Go to Menu

Page 84

Scalar Optimization Options

-h [no]interchange

Default: -h interchange

• The -h interchange option allows the compiler to attempt to
interchange all loops, a technique that is used to gain performance
by having the compiler swap an inner loop with an outer loop. The
compiler attempts the interchange only if the interchange will
increase performance. Loop interchange is performed only at scalar
optimization level 2 or higher.

• The -h nointerchange option prevents the compiler from attempting
to interchange any loops. To disable interchange of loops
individually, use the

#pragma CRI nointerchange directive.

Go to Menu

Page 85

Scalar Optimization Options (continued)
-h scalarn

Default: -h scalar2
The -h scalarn option specifies the level of automatic scalar optimization to be performed.
Scalar optimization directives are unaffected by this option. The values for n are:

0 Minimal automatic scalar optimization. The -h matherror=errno and the -h zeroinc options are
implied by -h scalar0.

1 Conservative automatic scalar optimization. This level implies -h matherror=abort and -h
nozeroinc.

2 Aggressive automatic scalar optimization. The scalar optimizations that provide the best
application performance are used, with some limitations imposed to allow for faster
compilation times.

3 Very aggressive optimization; compilation times may increase significantly.
-h [no]zeroinc

Default: -h nozeroinc
The -h nozeroinc option improves run time performance by causing the compiler to assume
that constant increment variables (CIVs) in loops are not incremented by expressions with a
value of 0. The -h zeroinc option causes the compiler to assume that some constant increment
variables (CIVs) in loops might be incremented by 0 for each pass through the loop,
preventing generation of optimized code. For example, in a loop with index i, the expression
expr in the statement i +=expr can evaluate to 0. This rarely happens in actual code. -h zeroinc
is the safer and slower option. This option is affected by the -h scalarn option Go to Menu

Page 86

Math Options
-h fpn

Default: -h fp2
The -h fp option allows you to control the level of floating-point optimizations. The n
argument controls the level of allowable optimization; 0 gives the compiler minimum
freedom to optimize floating-point operations, while 3 gives it maximum freedom. The higher
the level, the lesser the floating-point operations conform to the IEEE standard. This option is
useful for code using algorithms that are unstable but optimizable. Generally, this is the
behavior and usage for each -h fp level:

• The -h fp0 option causes your program's executable code to conform more closely to the IEEE
floating-point standard than the default mode (-h fp2). When you specify this level, many
identity optimizations are disabled, vectorization of floating-point reductions are disabled,
executable code is slower than higher floating-point optimization levels, and a scaled complex
divide mechanism is enabled that increases the range of complex values that can be handled
without producing an underflow.

• Note: Use the -h fp0 option only when your code pushes the limits of IEEE accuracy or
requires strong IEEE standard conformance.

• The -h fp1 option performs various, generally safe, non-conforming IEEE optimizations, such
as foldinga == ato true, where a is a floating point object. At this level, floating-point
reassociation1 is greatly limited, which may affect the performance of your code. You should
never use the -h fp1 option except when your code pushes the limits of IEEE accuracy or
requires strong IEEE standard conformance.

• -h fp2 — includes optimizations of -h fp1.
• -h fp3 — includes optimizations of -h fp2.
• You should use the -h fp3 option when performance is more critical than the level of IEEE

standard conformance provided by -h fp2. Go to Menu

Page 87

Floating-point Optimization Levels

Optimization
Type fp0 fp1 fp2 (default) fp3

Complex divisions Accurate and
slower

Accurate and
slower

Less accurate (less
precision) and faster.

Less accurate (less
precision) and faster.

Exponentiation
rewrite None None Maximum performance Maximum performance

Strength reduction Fast Fast Aggressive Aggressive
Rewrite division as
reciprocal equivalent None None Yes Aggressive

Floating point
reductions Slow Fast Fast Fast

Safety Maximum Moderate Moderate Low
Expression factoring None Yes Yes Yes
Expression tree
balancing None No Yes Yes

Table below compares the various optimization levels of the -h fp option (levels 2 and 3
are usually the same). The table lists some of the optimizations performed; the compiler
may perform other optimizations not listed.

Go to Menu

Page 88

Loopmark: Compiler Feedback

• Compiler can generate an filename.lst file.
– Contains annotated listing of your source code with letter

indicating important optimizations
%%% Loopmark Legend %%%
Primary loop type Modifiers
------ ---- ---- --------

a – vector atomic memory operation
A – Pattern matched b – blocked
C – Collapsed f – fused
D – Deleted m – streamed but not partitioned
I – Inlined p – conditional, partial and/or computed
M – Multithreaded r – unrolled
P – Parallel/Tasked s – shortloop
V – Vectorized t – array syntax temp used
W – Unwound w – unwound

Go to Menu

Page 89

Example: Cray loopmark messages for Resid

• ftn –rm … or cc –hlist=m …

29. b-------< do i3=2,n3-1
30. b b-----< do i2=2,n2-1
31. b b Vr--< do i1=1,n1
32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)
33. b b Vr > + u(i1,i2,i3-1) + u(i1,i2,i3+1)
34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. b b Vr > + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
36. b b Vr--> enddo
37. b b Vr--< do i1=2,n1-1
38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
39. b b Vr > - a(0) * u(i1,i2,i3)
40. b b Vr > - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))
41. b b Vr > - a(3) * (u2(i1-1) + u2(i1+1))
42. b b Vr--> enddo
43. b b-----> enddo
44. b-------> enddo

Go to Menu

Page 90

Example: Cray loopmark messages for Resid (continued)

• ftn-6289 ftn: VECTOR File = resid.f, Line = 29
– A loop starting at line 29 was not vectorized because a recurrence was found

on “U1” between lines 32 and 38.
• ftn-6049 ftn: SCALAR File = resid.f, Line = 29

– A loop starting at line 29 was blocked with block size 4.
• ftn-6289 ftn: VECTOR File = resid.f, Line = 30

– A loop starting at line 30 was not vectorized because a recurrence was found on
“U1” between lines 32 and 38.

• ftn-6049 ftn: SCALAR File = resid.f, Line = 30
– A loop starting at line 30 was blocked with block size 4.

• ftn-6005 ftn: SCALAR File = resid.f, Line = 31
– A loop starting at line 31 was unrolled 4 times.

• ftn-6204 ftn: VECTOR File = resid.f, Line = 31
– A loop starting at line 31 was vectorized.

• ftn-6005 ftn: SCALAR File = resid.f, Line = 37
– A loop starting at line 37 was unrolled 4 times.

• ftn-6204 ftn: VECTOR File = resid.f, Line = 37
– A loop starting at line 37 was vectorized. Go to Menu

Page 91

Byte Swapping

• -hbyteswapio
– Link time option
– Applies to all unformatted fortran IO

• Assign command
– With the PrgEnv-cray module loaded do this:

•setenv FILENV assign.txt
•setenv –N swap_endian g:su
•setenv –N swap_endian g:du

• Can use assign to be more precise

Page 92

Cray X86 Related Publications

• The following documents contain additional information that
may be helpful:
– Cray C and C++ Reference Manual (http://docs.cray.com)
– cc(1) compiler driver man page for all Cray XT C compilers
– craycc(1) man page for the Cray C compiler
– CC(1) compiler driver man page for all Cray XT C++ compilers
– crayCC(1) man page for the Cray C++ compiler
– intro_pragmas(1) man page
– Cray Fortran Reference Manual (http://docs.cray.com)
– ftn(1) compiler driver man page for all Cray XT Fortran compilers
– crayftn(1) man page for the Cray Fortran compiler
– Cray XT Programming Environment User's Guide (http://docs.cray.com)
– aprun(1) man page
– Using Cray Performance Analysis Tools
– Cray Application Developer's Environment Installation Guide

(http://docs.cray.com)
Go to Menu

Page 93

Outline: Resources for Users

Go to Menu

– Optimization-Related References

– Getting Started

– Advanced Topics

– More Information

Page 94

Resources for Users: Optimization-Related References

• Software Optimization Guide for AMD64 Processors (Guidelines for serial optimizations
specific to AMD Opteron on the AMD site):
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF

• OpenMP Specifications/Documentation:
http://openmp.org/wp/openmp-specifications/

• OpenMP tutorial from LLNL
https://computing.llnl.gov/tutorials/openMP/

Go to Menu

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF
http://openmp.org/wp/openmp-specifications/
https://computing.llnl.gov/tutorials/openMP/

Page 95

Resources for Users: Getting Started

• About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

• Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd_craywkshp_apr2008.pdf

• PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

• NCCS Training & Education – archives of NCCS workshops and seminar series,
HPC/parallel computing references

http://www.nccs.gov/user-support/training-education/

• 2009 Cray XT5 Quad-core Workshop

http://www.nccs.gov/user-support/training-education/workshops/2008-cray-xt5-quad-
core-workshop/

Go to Menu

Page 96

Resources for Users: Advanced Topics

• Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

• Using Cray Performance Tools - CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging-
optimization/cray-pat/

• I/O Tips for Cray XT4

http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-
tips/

• NCCS Software

http://www.nccs.gov/computing-resources/jaguar/software/
Go to Menu

Page 97

Resources for Users: More Information

• NCCS website

http://www.nccs.gov/

• Cray Documentation

http://docs.cray.com/

• Contact us

help@nccs.gov

Go to Menu

	PGI and Cray Compiler Optimization
	Outline
	Foreword
	Outline: Introduction
	Parallel Compiling on Jaguar
	System Parallel Compilers
	Wrappers and Compiling Tips
	System Serial Compilers
	Default Compilers
	MPI Codes
	Outline: PGI® compilers
	Portland Group (PGI)
	List of the Compiler Option Categories
	PGI Basic Compiler Usage
	Flags to support language dialects
	Specifying the target architecture
	Flags for debugging aids
	Useful Compiler Flags
	Optimization-Related PGI Compiler Options
	Optimization-Related PGI Compiler Options (continued)
	Optimization-Related PGI Compiler Options (continued)
	Outline: Getting Started with PGI Compiler Optimizations
	Quick Start
	-help and -Minfo
	–Mneginfo and –dryrun
	Common Performance Challenges
	What is Vectorization on x64 CPUs?
	Optimization Strategies
	Outline: Optimization Categories (Node Level Tuning)
	Local and Global Optimization
	Local Optimization
	Global Optimization
	Local and Global Optimization using –O
	Local and Global Optimization using –O (continued)
	Vectorization
	Loop Optimization: Unrolling, Vectorization, and Parallelization
	Vectorizable F90 Array Syntax Data is REAL*4
	–fastsse –Minfo
	Scalar SSE vs. Vector SSE
	Vectorizable C Code Fragment?
	Pointer Arguments Inhibit Vectorization
	C Constant Inhibits Vectorization
	-Msafeptr Option and Pragma
	Common Barriers to SSE Vectorization
	Barriers to Efficient Execution of Vector SSE Loops
	Interprocedural Analysis (IPA)
	Interprocedural Analysis (IPA) and Optimization
	What can Interprocedural Analysis and Optimization with –Mipa do for You?
	Effect of IPA on the WUPWISE Benchmark
	Using Interprocedural Analysis
	Function Inlining
	Function Inlining
	Explicit Function Inlining
	Specific recommendations for C++
	SMP Parallelization
	SMP - Shared-Memory Parallel
	SMP Parallelization
	Calculation of Overhead
	Calculation of Overhead (continued)
	Synchronization benchmark (Cray XT5)
	Array benchmark – Two Threads (Cray XT5)
	Array benchmark – Array of Size a[1] (Cray XT5)
	Miscellaneous Optimizations
	Profile-Feedback Optimization (PFO)
	Miscellaneous Optimizations
	PGI Documentation and Support
	Cray X86 compilers
	Outline: Getting Started with Cray Compiler Optimizations
	Quick Start
	Directives
	Current Strengths
	Outline: Optimization Options
	General Optimization Options
	General Optimization Options (continued)
	General Optimization Options (continued)
	General Optimization Options (continued)
	General Optimization Options (continued)
	General Optimization Options (continued)
	General Optimization Options (continued)
	Automatic Cache Management Options
	Vector Optimization Options
	Inlining Optimization Options
	Inlining Optimization Options (continued)
	Scalar Optimization Options
	Scalar Optimization Options (continued)
	Math Options
	Floating-point Optimization Levels
	Loopmark: Compiler Feedback
	Example: Cray loopmark messages for Resid
	Example: Cray loopmark messages for Resid (continued)
	Byte Swapping
	Cray X86 Related Publications
	Outline: Resources for Users
	Resources for Users: Optimization-Related References
	Resources for Users: Getting Started
	Resources for Users: Advanced Topics
	Resources for Users: More Information

