 NCCS. I3I:IV

NATIONAL CENTER FOR COMPUTATIONAL SCIE

Using Parallel 1/0

| NATIONAL CENTER FOR COMPUTATIONAL SC

Acknowledgements

e This document is based on the material originally presented by

— Rajeev Thakur. Mathematics and Computer Science Division
Argonne National Laboratory

« MPI-2 Tutorial

— Lonnie Crosby and Mark Fahey. National Institute for
Computational Sciences (NICS) 5

.+:2009 Cray XT5 Quad-core Workshop

e
——

http://www.sdsc.edu/us/training/workshops/institute2005/docs/Thakur-MPI-IO.ppt
http://www.nccs.gov/user-support/training-education/workshop-archives/2008-cray-xt5-quad-core-workshop/

779 N CCcs.Gav

MNATIONAL CENTER FOR PUTATIONAL SC

Outline

e Introduction

o Parallel I/0O Support for MPI:. MPI-10
o Parallel File System: Lustre

e Resources for Users

79 NCCS.GOV

TIONAL CENTER FOR PUTATIONAL SC

Outllne Introduction

 Factors which affect I/O
 Typical application I/O Patterns
e |/O Parallelism
o Types of Parallelism
e Limits of I/O

 for Computational Science

< 4 NCCS.GOV

TIONAL CENTER FOR COMPUTATIONAL SCIENCES

Factors Which Affect 1/0O

 1/O is simply data migration.
— Memory «—— Disk
e Cache (L1, L2, L3)
« RAM
 Disk
» Size of erte/read operations

/A N I: B 5 B I:IV

Typlcal Application 1/O Patterns

Serial 1/0O

» Spokesperson
— One process performs 1/0O.

Parallel 1/0O

* File per Process
- Each | process performs 1/O to a smgle file.

el R

G- %

€ NCCS.GOV

NATIONAL CEMNTER FOR COMPUTATIONAL SCIENCES

_ I/O Parallelism

’

Go to Menu

€ NCCS.GOV

NATIONAL CEMNTER FOR COMPUTATIONAL SCIENCES

Types of Parallelism

* Process level parallelism
— MPI
—10 Libraries (HDF5, MPI-10, p-netCDF)

* File System parallelism

—Distributed File System
—Shared Parallel File System (GPFS, Lustre)

Go to Menu

79 NCCS.GOV

TIONAL CENTER FOR COMPUTATIONAL SC

L|m|ts of 1/O

e Serial 1/0
— Is limited by the single process which performs 1/0O.

» Parallel Process I/0O
— 1s limited by the number of disks which are concurrently

utilized.
— Contention for file system resources.

-y . — O
a || I YaYh ICTAaOnm —
. P

NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

1/O for Computational Science

Application
Parallel File System
Storage Hardware

Application
High—Level I/O Library
MPI-IO Implementation

Parallel File System

Storage Hardware

779 NCCS.GOV

NATIONAL CENTER FOR PUTATIONAL SC

ngh Level Libraries

* Provide an appropriate
abstraction for domain Application

— Multidimensional datasets _

— Typed variables - _
— Attributes MPI-10 Implementation

» Self-describing, structured |Je_ Parallel File System

——

fO' .m'aj S e e Storage Hardware

NCCS. I3I:IV

NATIONAL CENTER FOR COMPUTATIONAL SCIE

I/O Mlddleware

 Facilitate concurrent access by

groups of processes
— Collective I/0 High-Level I/O Library

 EXxpose a generic interface Parallel File System

-—--=—Ga blockfor high-level -:
~libraries "*"'r-'su' s Storage Hardware

Application

NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Parallel File System

e Manage storage hardware
— Present single view

— Focus on concurrent, independent High-Level I/O Library

access .
- ntation
— Knowledge of collective 1/0 MPI-10 Implementatio

usuall ver Ilmlted P

Application

rterface that Storage Hardware

€ NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Outllne MPI-10

NS

Introduction
Common Ways of Doing I/O in Parallel

Programs
Pros and Cons of Sequential 1/0

Another Way
What is Parallel 1/0?
Why Parallel 1/0?
Y/Vé\))/ is MPI a Good Setting for Parallel
Using MPI for Simple 1/0
— Individual File Pointers

— Explicit Offsets
- ertm | to aFile

Collective 1/0

Under the Covers of MPI-10

Data Sieving

Data Sieving Writes

Two-Phase Collective 1/0

Two-Phase Writes

Aqggregation

Accessing Arrays Stored in Files
Using the “Distributed Array” (Darray)

Datatype
A Word of Warning about Darray

Using the Subarray Datatype

—

e e e — LocaI Array with Ghost Area in Memory
-'—

_“’"',‘-.5““ | - ¥

1 ' ke]
Ce ‘-‘ QULEU 3‘

rﬂr.g BRERAE

TR N

J N I: C 5 B I:IV

TIONAL CENTER FOR PUTATIONAL SC

Introduction

e Goals of this section

— Introduce the important features of MPI-10 in the form of
example programs, following the outline of the Parallel 1/O
chapter in Using MPI-2

— focus on how to achieve high performance
— learn how to use MPI-10 - -
— be able to immediately use MPI-10 in your appLications

N 1] |l‘ g ‘l ‘,-1

NBBS EI:IV

,-"."'
i “:r_‘,_'i'
. A TIONAL CENTER FOR COMPUTATIONAL SC

Common Ways of Doing I/O In Parallel Programs

e Seguential 1/0O:
— All processes send data to rank 0, and O writes it to the file

J N I: C 5 B I:IV

TIONAL CENTER FOR PUTATIONAL SC

Pros and Cons of Sequentlal /O

e Pros:

— parallel machine may not support parallel file system (e.g.,
no common file)

— some 1/O libraries (e.g. HDF-4, NetCDF) not parallel

— resulting single file is handy for local file system utilities:
Ttp, mv

— big blocks improve performance

1 ! :

Another Way

» Each process writes to a separate file

N |: C 5 |3 DV

AP NATIONAL CENTER FOR

What IS Parallel 1/O?

* Multiple processes of a parallel program
accessing data (reading or writing) from a
common file

7$ NCCS.GOV
Why Parallel 1/O?

* Non-parallel 1/0 is simple but

— Poor performance (single process writes to one
file) or

— Awkward and not interoperable with other tools
(each process writes a separate file)

e« Parallel /O |
- id ﬁ Pl " PR | . & ._ !l;:'-.'

—

l*q
— . ——
-

79 NCCS.GOV

TIONAL CENTER FOR PUTATIONAL SC

Why Is MPI a Good Settlng for Parallel 1/0?

o Writing is like sending a message and reading is like
receiving

« Any parallel 1/0O system will need a mechanism to
— define collective operations (MPI communicators)
— define noncontiguous data layout in memory and file (MPI
datatypes) | i
— Test completion o nonblocking operati API request

"'..j-!,_ ‘ 1)

 NCCS. I3I:IV

NATIONAL CENTER FOR COMPUTATIONAL SCIE

Using MPI for Simple 10

€ NCCS.GOV

u. NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Usmg MPI for Simple 10: Individual File Pointers

Each process needs to read a chunk of data from a common file
FILE

J

A A
Y Y Y

MPI_File fh; \ l l l

MP1_Status status; pq P1 P2

MP1_Comm_rank(MP1_COMM_WORLD, &rank);
MP1_Comm_size(MP1_COMM_WORLD, &nprocs);

7$ NCCS.GOV

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Usmg MPI for Simple IO: Expllc:lt Offsets

include "mpif.h"

integer status(MP1_STATUS SIZE)
integer (kind=MP1_OFFSET_KIND) offset

C in F77, see implementation notes (might be i1nteger*8)

call MPI_FILE OPEN(MPI_COMM_WORLD, ®/pfs/datafile”, &

MP1_MODE_RDONLY, MPI _INFO NULL, fh, 1err)
nints = FILESIZE / (nprocs*INTSIZE)
offset = rank * nints * INTSIZE
call MP1_FILE READ AT(fh, offset, buf, nints,

MP1 INTEGER, status, 1err)

call MP1_GET COUNT(status, MPI_INTEGER, count, 1err)
print *, "process ", rank, "read ", count, "integers”

call MP1_FILE CLOSE(fh, 1err)

Go to Menu

NCCS.GOV
Usmg MPI for Simple 10: ertlng to a File

e Use MP1 Fille write or
MPI File write at

 Use MP1 MODE_WRONLY or MP1 _MODE_RDWR as
the flagsto MP1 _File open

 [f the file doesn’t exist previously, the flag
MPI MODE CREATE must also be passed to

_ E———

=‘-'_='--h

F- w ...‘-' . i ||.|- . I-_ !ll.

$ NCCS.GOV
T -
& ~ NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

—

Using MPI for Simple 10: Using File Views

* Processes write to shared file

29 NCCS.GOV
MNATIONAL CENTER FOR COMPUTATIONAL BEIENCEE!]

Using MPI for Simple 10: File Views

Specified by a triplet (displacement, etype, and
filetype) passed to MP1_File _set view

displacement = number of bytes to be skipped
from the start of the file

etype = basic unit of data access (can be any
basic or derived datatype)

filetype = specifies which portion of the file Is
visible to the process

Go to Menu

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Using MPI for Simple 10: File View Example

MP1_File thefile;

for (1=0; 1<BUFSIZE; 1++)
buf[1] = myrank * BUFSIZE + 1;

MP1 _File open(MPI_COMM_WORLD, "testfile',
MPI1_MODE_CREATE | MP1_MODE_WRONLY,
MPI_INFO_NULL, &thefile);

MPI_File_set view(thefile, myrank * BUFSIZE *

- sizeof(int), MPI_INT,

D]

d P |
] 1V '__.J ¥
|

.$ NCCS.GOV

l'

Usmg MPI for Simple 10: MPI_File_set_view

» Describes that part of the file accessed by a
single MPI process.
 Argumentsto MPI _Fille set view:
- MPI_File file
= MPI_Offset disp
S B

aya
Leyycec

| MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Using MPI for Simple 10: Fortran Example

PROGRAM main

use mpi

integer i1err, i1, myrank, BUFSIZE, thefile
parameter (BUFSIZE=100)
integer buf(BUFSIZE)

integer(kind=MP1_OFFSET_KIND) disp

gg!l.MPlngIT ierr)
“call MPI_COMM_RANK(MPI_COMN

i o= .‘ . Y

7$ NCCS.GOV

.| NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Usmg MPI for Simple 10: Fortran Example (continued)

call MPI_FILE OPEN(MP1_COMM_WORLD, “testfile", &
MP1_MODE_WRONLY + MPI1_MODE_CREATE, &
MP1 _INFO _NULL, thefile, 1err)
call MPI_TYPE SIZE(MPI1 INTEGER, intsize)
disp = myrank * BUFSIZE * 1ntsize
call MPI_FILE SET VIEW(thefile, disp, MPI1 _INTEGER, &
MP1_INTEGER, "native", &
MPI INFO _NULL, merr) - -
ca&i MP1 ELLE;ﬂBITE(theflle buf, BUFSIZE, MP1 _INTEGER, &

'-'—“'=-=---

Fill et _'m" !1= . ___:_""-i5'-,

y NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Usmg MPI for Simple 10: C++ Example

// example of parallel MPI read from single file
#include <i1ostream.h>
#include "mpi.h"

int main(int argc, char *argvl[])
{
int bufsize, *buf, count;
char filename[128];
MPI:-:Status status;

‘-_=="—_-._-,_—
! .—-"_!*—
)

“MP1 z zCOM RLE NIOF

y NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Usmg MPI for Simple 10: C++ Example (continued)

MPI1::0ffset filesize = thefile.Get_si1ze();

filesize = Tilesize / sizeof(int);

bufsize = Ffilesize / numprocs + 1;

buf = new Int[bufsize];

thefile.Set view(myrank * bufsize * sizeof(int),
MPI_INT, MPI_INT, "native",
MPI::INFO _NULL);

thefile.Read(buf, bufsize, MPI_INT, &status);

count = status.Get_count(MPI_INT);

k. ¥ h_- b *
"' > << ¥ G"I‘ ~A 1 1]

E) - _':ﬂ e B '

| &

NBBS BI:IV

,-"."'
i “:r_‘,_'i'
. A TIONAL CENTER FOR COMPUTATIONAL SC

Using MPI for Simple 10O: Other Ways to Write to a Shared File

Pl File seek } like Unix seek

™

P1_File_read_at combine seek and 1/0
Pl File write at " for thread safety

Pl _File_read shared
P1_File_write_shared

. use shared file pointer

——
s
—

- = ‘."\L‘l -
- i -

g — "
—————a = “" -l
= o i S e -

— L 1
pos ; i |
L

7% NCCS.GOV

- _,..-{-é‘ NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Noncontlguous /O

Contiguous /0O moves data from a single block in memory
Into a single region of storage

Noncontiguous I/O has three forms:

— Noncontiguous in memory, noncontiguous in file, or noncontiguous in
both

Structured data leads naturally to noncontiguous 1/0

p0 p0 p0

ey
1
== B
—
- PO

Contiguous Noncontiguous Noncontl uous Noncontl uous
In Memory in File in Bo

'$ NCCS.GOV

e NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Example: Distributed Array Access

2D array distributed among four processes

€ NCCS.GOV

. L ATIONAL CENTER FOR COMPUTATIONAL SCIENCES

A Simple Noncontiguous File View Example

etype = MPI_INT

filetype = two MPI_INTSs followed by
a gap of four MPI_INTs

7€ NCCS.GOV

b " NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

F|Ie Vlew Code

MP1
MP1
MP1

MP1
Ib

MP1
MP1

_Aint Ib, extent;
_Datatype etype, filetype, contig;
_Offset disp;

_Type_contiguous(2, MPI_INT, &contig);
= 0; extent = 6 * sizeof(int);
_Type create resized(contig, lb, extent, &filetype);

_Type_commit(&filetype);

dlsp = 5 *_S|zeof(|nt) etype = MPI_INT;

-
SIS e
‘1 e
I
LR] o E——

Many applications have phases of computation and 1/0

During 1/O phases, all processes read/write data
— We can say they are collectively accessing storage

Collective 1/O is coordinated access to storage by a group of processes
— Collective 1/0 functions must be called by all processes participating in 1/0
— Allows I/O layers to know more about access as a whole

Independent I/O is not organized in this way

No apparent order or structure to accesses

S -

_na ni ni n3jn4 nS n6ﬁ= n0 nl n2 n3 n4d n5 n6
2| FJJ vJ' J- o s Iii..

Independent I/O Collective I/O

Collective 1/O (continued)

« MPI _File read all,
MPI _File read at all,efc

 all indicates that all processes in the group

specified by the communicator passed to
MPI_Fi1le open will call this function

» Each process specifies only its own access
Information -- the argument list Is the same as
for the non-collective functions

Go to Menu

.$ NCCS.GOV

[
_T'F..A.[E/ P

Under the Covers of MPI- IO

 MPI-1O implementation Is given a lot of
Information In this case:

— Collection of processes reading data
— Structured description of the regions

. Implementatlon has some options for how to

NCCS.GOV

) l:'.‘
o
g NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Data Sieving

« Data sieving is used to combine lots of small accesses into a

single larger one
— Remote file systems (parallel or not) tend to have high latencies

— Reducing # of operations important

» Generally very effective, but not as good as having a PFS that
supports noncontiguous access

Holes

1% I8 N [S
. 1 H H B |

Region desired by application Region accessed with data sieving

€ NCCS.GOV

N '_.J- .
ol ,,..g'é ‘ MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Data Sieving Writes

e Using data sieving for writes is more complicated
— Must read the entire region first
— Then make our changes
— Then write the block back

« Requires locking in the file system
— Can result in false sharing (interleaved access)
— PFS supporting noncontiguous writes is preferred

-
- s,
—— "—-ll.__ o

T po - " po
— (T pE BN BN (T N NN BEn
vt
- -

(0) Initial State (1) Read (2) Modify (3) Write

%$ NCCS.GOV

AP NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Two Phase Collective I/0

* Problems with independent, noncontiguous access
— Lots of small accesses
— Independent data sieving reads lots of extra data

 ldea: Reorganize access to match layout on disks
— Single processes use data sieving to get data for many

— Often reduces total 1/0O through sharing of common blocks
e Second “phase" moves data to final destinations

JESENE=. = ——
- l_‘ L I] a

P A R
Oonr ann

Initial State Phase 2

& IEEEN=VE

Two-Phase Writes

o Similarly to data sieving, we need to perform a
read/modify/write for two-phase writes if combined
data Is noncontiguous

e Overhead is substantially lower than independent
access to the same regions because there Is Ilttle or no
false sharmg

—— —
» Note that two-[

— _I"

& IEEERE =Y,

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Aggregation

« Aggregation refers to the more general application of this
concept of moving data through intermediate nodes
— Different #s of nodes performing 1/0
— Could also be applied to independent 1/0

e Can also be used for remote 1/O, where aggregator processes
are on an entirely different system

_l_a—-__

J— "_ _H‘ _-l ; -.:--
- -
i |

et

PR A A

Initial State Redistribute

' Nccs GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Accessing Arrays Stored In Files

PO P1
coords = (0,0) coords = (0,1)

P2
coords = (0,2)

P4
coords = (1,0) coords = (1,1)

P5
coords = (1,2)

p ¥

{Iﬁi r~,"'

y NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Usmg the “Distributed Array” (Darray) Datatype

Int gsizes[2], distribs[2], dargs[2], psizes[2];

gsizes|O] m; /* no. of rows 1In global array */
gsizes|[1] ; /* no. of columns in global array*/

distribs[0] = MPI_DISTRIBUTE_BLOCK;
distribs[1] = MPI_DISTRIBUTE BLOCK:

dargs[0] = MPI _DISTRIBUTE_DFLT DARG;
dargs[1] = MPI_D S:EE’;IBUIEJD.FLLQA.RG =

——
“-I-..II

=

€ NCCS.GOV

¢ ’ /
s '/ " NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Darray (continued)

MP1_Comm_rank(MP1_COMM_WORLD, &rank);
MP1_Type create darray(6, rank, 2, gsizes, distribs, dargs,

psizes, MPI_ORDER C, MPI_FLOAT, &filetype);
MPI_Type commit(&fFiletype);

MP1_File_open(MPI_COMM WORLD, "/pfs/datafile",
MP1_MODE_CREATE | MPI_MODE_WRONLY,
MPI_INFO_NULL, &Fh):

MP1_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",

=3 ___..__‘ Py -
- \I-‘ y lk'— -._-. ‘ l-..-.._ Ja
- 2 »

I

. " -
Ll) r [r o
¥d) g F b h "

A Word of Warning about Darray

The darray datatype assumes a very specific definition of data
distribution -- the exact definition as in HPF

For example, if the array size is not divisible by the number of
processes, darray calculates the block size using a ceiling
division (20/6=4)

darray assumes a row-major ordering of processes in the

logical grid, as assumed by cartesian process topologies in
MPI-1

If your application uses a different definition for data
distribution or logical grid ordering, you cannot use darray.
Use subarray instead.

Go to Menu

-

CI={={=N c{m=)V

.._.tl’.‘.«.'-. T
- " | NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Using the Subarray Datatype

gsizes|O] m; /* no. of rows in global array */
gsizes|[1] n; /* no. of columns 1n global array*/

psizes|O] 2; /* no. of procs. i1n vertical dimension */
psizes[1] 3; /* no. of procs. In horizontal dimension */

Isizes[O]} m/psizes[0]; /7* no. of rows in local array */
Isizes[1] n/psizes[1]; /* no. of columns in local array */

SNSNENE
] E LR i pem= sk — 1)

Subarray Datatype (continued)

/* global i1ndices of first element of local array */
start _indices[0] = coords[0] * Isizes[O];
start_indices|[1] = coords[1l] * Isizes[l];

MP1_Type create subarray(2, gsizes, lIsizes, start indices,
MP1_ORDER _C, MPI_FLOAT, &filetype);
MPI_Type_ commit(&fFiletype);

MP1_File open(MP1_COMM_WORLD, "/pfs/datafile',
MPI1_MODE CREATE | MPI1_MODE_WRONLY,
MPI_ INFO NULL, &fh);

MPI _File set view(fh, 0, MP1_FLOAT, filetype, "native",
MP1_INFO NULL);

local array size = Isizes[0] * Isizes|[1];

MP1 _File write all(fh, local _array, local _array size,

MPI_FLOAT, &status);

Go to Menu

NI:E:S BI:IV

TIONAL CENTER FOR COMPUTATIONAL SC

Local Array with Ghost Area
“In Memory
o Use a subarray datatype to describe the noncontiguous layout

In memory
» Pass this datatype as argumentto MP1_File write all

(0,0) (0,107)

(4,4) (4,103) .
< _ local data

]

¥

€ NCCS.GOV

<L Lo ,/ -fé

. NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Local Array with Ghost Area

memsizes[0] = Isizes[0] + 8;
/* no. of rows 1n allocated array */
memsizes[1l] = Isizes[1l] + 8;
/* no. of columns 1n allocated array */
start_indices[0] = start _indices[1l] =
/* indices of the fTirst element of the local array
in the allocated array */

MP1 Type create_subarray(2, memsizes, Isizes, ' =
X ste ._.né+ces,.MEJ_QRQER C, MPI_FLOAT, &memtype);

|
- b ‘ . 1] ! - v
b A [B h " I; L4 |

~€ NCCS.GOV

w4 | MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Accessing lrregularly Distributed Arrays

Process Q’s data array Process 1’s data array

Process 0’s map array Process 1°’s map array
0 - 417113

Process 2’s data array

Process 2’s map array

10

14

1

5

€ NCCS.GOV

i " NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Accessing lrregularly Distributed Arrays (continued)

integer (kind=MPI_OFFSET_KIND) disp

call MP1_FILE_OPEN(MPI_COMM_WORLD, "/pfs/datafile", &
MPI_MODE_CREATE + MPI_MODE RDWR,
MP1_INFO _NULL, fh, ierr)

call MPI_TYPE CREATE_ INDEXED BLOCK(bufsize, 1, map,
MPI1_ DOUBLE_PRECISION, filetype,

call MP1_TYPE _COMMIT(Filetype, 1err)
STl SEE= (R soes s e

— f e -

1 B B\ ' - B a1l s
Al MPI_FILE SET_VIEW(

| 4 f |
L ' : I
|

‘-:--——l‘.a

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Nonblockmg /O

MPI Request request;
MPI Status status;

MP1_File 1write _at(fh, offset, buf, count, datatype,

&request);

79 NCCS.GOV

TIONAL CENTER FOR COMPUTATIONAL SC

Spllt Collective 1/0

A restricted form of nonblocking collective 1/0O

e Only one active nonblocking collective operation
allowed at a time on a file handle

Therefore, no request object necessary

MPI Flle wrlte all _begin(fh, buf, count, datatype)*

. _ Ea=——=r — S
. —f A B 3 i
i . .| - | A
.ﬁ, 9 l K. i is iy ¥l |I
.3

€ NCCS.GOV

- P NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Shared File Pointers

#include "mpi.h"
/ C++ example
int main(int argc, char *argvl[])

int buf[1000];
MPI::-:File fh;

—
—
S

MPI:-Init();

'h = MPI::File::Open(MPI::COMM_WORLD,

$ NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Outlme Parallel File System - Lustre

Introduction

Luster Concepts

A Biqgger Picture

Lustre Striping

File Parallelism

Default Configuration

Ifs getstripe

Modifications of the Defaults: setstripe

Scalability: File Per Process
Scalability: Single Shared File
Scalability: Summary

Buffered 1/0O

Standard Output and Error

Binary Files and Endianness

Case Study: Parallel 1/0

General Optimization Tips
Lustre Best Practices for Users
L tre Best Practices for Developers

n I

Flaiatocally

Case Study: Buffered I/O

Fault Tolerance

-—-F—-—c-,*_

(; NCCS.GOV

Introduction

The parallel file system available on jaguarpf is called Lustre
(/tmp/work/$SUSER), which offers a set of user-level commands to tune and
optimize file access operations.

For many applications a technique called file striping will increase 1/0
performance. File striping will primarily improve performance for codes
doing serial 1/0O from a single node or parallel 1/0 from multiple nodes
writing to a single shared file, such as with MPI-10, parallel HDF5, or
parallel NetCDF.

The Lustre file system is made up of an underlying set of 1/O servers and
disks called Object Storage Servers (OSSs) and Object Storage Targets
(OSTs) respectively. A file is said to be striped when read and write
operations access multiple OST's concurrently. File striping is a way to
increase 1/0O performance since writing or reading from multiple OST's
simultaneously increases the available 1/O bandwidth.

Details about the Lustre file system and its configurations are available at
http://wiki.lustre.org/.

Go to Menu

http://wiki.lustre.org/

& IEEEN=VE

Luster Concepts

e Two types of servers

— Metadata server (MDS)
» Holds the directory tree
 Stores metadata about each file (except for size)

« Once file is opened, 1/O to file does not involve the
\Y/IDN

— Obje age server (0SS

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES)
"

A Bigger Picture

< Computational Nodes
Application

processes — Jaguarpf: 18,688

running on
compute
nodes

High speed
network

I/0
processes
running on

service R < Object Storage
nodes Server (OSS) Nodes

— Jaguarpf: 168
— 100 GB/s

/O channels

Y Y Y Y Y
]
RAID OST || OST Target (OST)
Devices — Jaguarpf: 672
— 6.2 TB Disk

- 41PB

Go to Menu

MATIONAL CENMNTER FOR COMPUTATIONAL SCIEMNCES

Lustre Striping

OSTl OST2 OST3 OSTl OST2 OST3
T Y2 D T\ Ya D

1 1 2

2 1

3
VAN J VAN J

Single Striped Two Striped

OST1 OST2 OST3
' D D

AN J
Fully Striped

Go to Menu

9 NCCS5.6OV |
NATIONAL CENTER FOR COMPUTATIONAL SCIENCES|
¥

File Parallelism

OSTO OST1 OST2 OST3 |Offset OMB 1MB 2MB 3MB 4MPB 5MiB

Go to Menu

€ NCCS.GOV

~ | MNATIOMAL CENTER FOR COMPUTATIONAL SCIENCES

Default Configuration

» The following command displays the IDs of the 672 file servers (called OSTs) on
jaguarpf (as of 9/04/09), as well as the default stripe count, stripe size and stripe
offset:

> |fs osts

OBDS:

O: widowl-0STOO0OO UUID ACTIVE
1: widowl-0OSTOOO1 UUID ACTIVE
2: widowl-0ST0O002 UUID ACTIVE

671: widowl-OSTO29f UUID ACTIVE

sy _iq- re/ k-d e R e — ——— _—
o : stripe size
Rl I "y

=

) AR | BE

'NCCS.6G0V

o NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Ifs getstripe

« To find out striping information for files and directories, the
following command can be used: Ifs getstripe --quiet <dir|file>

For exemple,

> Ifs getstripe --quiet file.txt
831832 Oxch158
831934 Oxcblbe
832342 Oxcb356
830997 Oxcaels

7$ NCCS.GOV

Modifications of the Defaults: setstripe

Lustre provides a user command setstripe for modifying one or more
striping parameters for individual files or directories.

Syntax:

>Ifs setstripe filename [stripe-size] [OST-offset] [stripe-count]

For example, the following command would change the default stripe size to
2MB:

> Ifs setstripe <dir|file> 2m -1 4

Where dir is an existing directory, and f1 le is a file that does not yet exist.
The first parameter (2m) represents the stripe size, the second parameter is the
stripe offset (-1 1is for round robin assignment starting at OST 0), while the

third parameter represents the default stripe count.
It is HIGHLY recommended that the default offset value is left unchanged.

Go to Menu

(; NCCS.GOV

Modifications of the Defaults: setstripe (continued)

When the setstripe is invoked on an existing directory, any new files
that are created in that directory in the future will inherit the newly defined

striping parameters. Existing files in that directory are not affected,
however. When setstripe isinvoked for a new file the file is created

with the new striping parameters. Setstripe cannot be invoked for an
existing file.

For example, to limit the number of OSTs to 1 issue the following
command:

> Ifs setstripe <dir|file> 1m -1 1

and to use all available OSTs:

> Ifs setstripe <dir|file> 1m -1 -1

Details of the supported Lustre commands are available on the Ifs man
page.
Note that the commands relevant to system administrators may not work in

user mode.
Go to Menu

(; NCCS.GOV

MNATIONAL CENTER FOR COMPUTATIONAL SCIENCEE!

General Optimization Tips

« There are different strategies for optimizing 1/O performance on Rosa
depending on the implementation of file I/O operations in an application
and the behavior and sizes of data transfers as well as the file sizes. The
table below lists some suggestions for commonly used file 1/O
Implementations in scientific applications.

File size [1/O pattern Recommended setting

<1GB Single file per MPI task/core Ifs setstripe <dir|file> 1m-11
<1GB Single file (read/written by a single MPI task) Ifs setstripe <dir[file> 1m -1 1
<1GB Single shared file accessed by multiple MPI tasks/core | Default

< 100GB |Single file per MPI task/core Default

< 100GB |Single file (read/written by a single MPI task) Default

< 100GB |Single shared file accessed by multiple MPI tasks/core |Ifs setstripe <dir|file> 1m -1 10
>100 GB |Single file per MPI task/core Potential scaling bottleneck
>100 GB |Single file (read/written by a single MPI task) Potential scaling bottleneck

>100 GB |Single shared file accessed by multiple MPI tasks/core |Ifs setstripe <dir|file> 1m -1 40

Go to Menu

NDDS BEIV

~ 4
< TIONAL CENTER FOR COMPUTATIONAL SC

Lustre Best Practices for Users

Use Ifs setstripe in asafe manner

Set striping appropriately for your use
Choose stripe width for your application
Avoid “excessively” large numbers of files in directories

yA\V/o][o! usmg Is -1 repeatedly

- ___..‘__‘._.
_..r IR A
N \V/ 2 ' : Yo Yala li-e“._ a l-,.-.._

——
“-I-..II

http://www.nccs.gov/user-support/general-support/file-systems/spider

NDDS BEIV

{ | TIONAL CENTER FOR COMPUTATIONAL SC

Lustre Best Practices for Users (continued...)

» Use Ifs setstripe in a safe manner
— Always use the explicit options, not the relative ones
— Avoid specifying a starting OST index
— Use —s for stripe width (default is 1MB)
» Can specify in bytes, kilobytes (k), megabytes (m), or gigabytes (g)
— Use —c for stripe count (default is 4)

ying n-aptmn.kee.ps the current valug

h

Lustre Best Practices for Users (continued...)

 Use Ifs getstripe to check the striping on a file
o Example: extracting source code
mkdir source
Ifs setstripe source c 1
cd source
tar -x —F $TARFILE
o Example: fixing incorrect striping
Ifs setstripe newfile -c 16
cp oldfile newfile
rm oldfile
mv newfile oldfile

Go to Menu

Lustre Best Practices for Users (continued...)

o Set striping appropriately for your use

— Default stripe count is 4, but may not match your
usage

— Small files (< 250 MB) should use a single stripe

— Large files accessed in parallel (single shared-file)
should have a stripe count that is a factor of the
number of writers (e.g. 20 vs. 21 for 400 writers)

e Cannot use more than 160 stripes currently
— Maximum number of OSTs currently available

Go to Menu

< NCCS.GOV
e 3
a8 3 L
MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

_.E.’.A.f::- - A
—'/ e TION

Lustre Best Practices for Users (continued...)

* For single shared-file, choose per-writer data
size as stripe width If possible

— If each rank will write 256 MB, then use 256 MB
as the stripe width

— Minimizes lock contention
— NCCS SciComp Liaison

—_— .-I,

i |

- B L]
e 3 _—— NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Lustre Best Practices for Users (continued...)

e Avoid directories with “excessive” numbers of
files in them
— “Excessive” Is a fuzzy number
— Greater 1M - definitely excessive

100k - probably excessive

o '\1-.-.- - arline

'$ NCCS.GOV
. A NaTIONAL CENTER FOR COMPUTATIONAL SCIENCES

Lustre Best Practices for Users (continued...)

 Avoid doing Is —1 repeatedly

— Especially in an excessively large directory!

— If you are just looking to see if a file exists, use
plain Is

— Better yet — look for that file explicitly .

—_ Avoid options that so time stam or add Color -
nli b ' ' ¥

& PEEENE=

L_ustre Best Practices for Developers

Open files read-only when possible
Read small, shared files once

Use a directory hierarchy to limit files in a single
directory

Use access(), not stat() to check for existence

SN ——

ey

¢G> NCCs.GoV

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Lustre Best Practices for Developers (continued...)

* Open files read-only when possible
— Fortran defaults to READWRITE if no ACTION
IS gIven
— Fortran adds O_CREAT if opening file for writing
« O CREAT requests an exclusive lock for the
file (not contents)

— Lock ping-pong championships when large job
opens the file from all ranks at once

Go to Menu

€ NCCS.GOV

= ; .-I. MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Lustre Best Practices for Developers (continued...)

o If all ranks need data from a single file, it is better to have
one reader and then broadcast the contents than have
everyone read the file.

Fortran example, without error handling and assuming
known file size:

1_COMM_RANK(MP1_COMM_WORLD, my_rank, ierr)

—t T -

-
= ‘ - Y
- o) — . -
. A - 7 i . l'.'
1 N LISGE
" f B

y . I

& PEEENE=

Lustre Best Practices for Developers (continued...)

e Use a directory hierarchy to limit files in a
single directory

— Opening a file currently keeps a lock on the parent
directory for one message round-trip

— Split directory up to avoid contention .
For two level hierarchy, square root of the total

!" | JI

. T") 'l:':‘ u
. NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Lustre Best Practices for Developers (continued...)

» Use access(), not stat() to check for existence

— Size Is not kept on metadata server, so using stat()
requires communication with each object storage
server that has a portion of the file

— access() only needs one request

Lustre Best Practlces for Developers (continued...)

« Avoid flock()
— O(N**2) algorithm for number of lockers on file
— Ok, If N is small

— Does not scale to systems the size of Jaguar or
- JaguarPF |

Lustre Best Practices for Developers (continued...)

e Consider using libLUT or middleware 1/0
libraries such as ADIOS

— Extracting full performance from the file system
requires knowledge of the environment

— Maintaining performance during concurrent access
from other users requires constant adaptation

— Do you really want to write all of this?
o And maintain it for multiple systems?

Go to Menu

. T") 'l:':‘ u
. NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Lustre Best Practices for Developers (continued...)

o Stripe-align 1/O if possible
— Lustre is a POSIX-compliant file system
— Overlapping writes are 'last-to-write wins*
— This requires locking of the contents
— Unaligned writes require obtaining locks from

- -
e .
= = A 11 a a a
- e | s |) v)\ W
. s1 V

o » b | L
¥ . .I i i ! 3

NCCS.GOV
R FOR COMPUTATIONAL SCIENCES

NATIONAL CENTE

Spokesperson — Serial 1/0O: importance of data locality

e 32 MB per OST (32 MB -5 GB) and 32 MB Transfer Size

Single Writer
Write Performance

120

100

20

m1MB Stripe
60

E32Z ME Stripe
40

"
2
1 2 4 16 3z &4 123 160

Stripe Count

Wirite [MB/s)

o

(=]

NCCS.GOV
R FOR COMPUTATIONAL SCIENCES

NATIONAL CENTE

Spokesperson — Serial 1/O: importance of data continuity (cont.)

 Single OST, 256 MB File Size

Single Writer
Transfer vs. Stripe Slze

140

120

100
B
m32MB Transfer
& EEME Trangfer
4 21 ME Trangfer |
R ,'.I".- 25 |\ ‘ k] i
A} M o4
2
. '
|
1 2 4 g 18 az &4 128

Stripe Size (ME}

Wite (MB/s)
o o o

(=]

(=]

Serlal |/O: Data Locallty and Continuity

e Data Locality

—Performance Is decreased when a single process
accesses multiple disks.

—Is limited by the single process which performs 1/O.

 Data Continuity
— Larger read/write operations improve performance.

— Larger stripe sizes improve performance (places
data contiguously on disk).

— Either may become a limiting factor.

Go to Menu

NCCS.GOV
Slngle Shared File

 Important Considerations
—Data locality
—Data continuity

e Parallel file Structure

i - -:-;:—I:I [- Pre———
e . - . TS

P S >

[NCCS.GOV

Single Shared File: Shared File Layouts

Shared File Layout #2

Shared File Layout #1 1or2 MB
Proc. 1

32 or 64 MIB Tor2 MB
Proc. 1 Proc. 2

1or2MB
Repetition #1 Proc. 3

32 or 64 MB Tor 2 MB
Proc. 2 Proc. 4

lor2 MB
Proc. 32

32 or 64 MB
Proc. 3

Repetition #2 - #31

32 or 64 MB
Proc. 4

1or2MB
Proc. 1
1or2 MB
Proc. 2
lor2 MB
Proc. 3
lor2 MB
Proc. 4

Repetition #32

32 or 64 MB
Proc. 32

o BN

lor2 MB
Proc. 32

[NCCS.GOV
6 NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Single Shared File: Results

Single Shared Flle (32 Processes)
1GB and 2 GB flle

u 1 ME Strips iLayout ®1}
32 ME StripeiLayout #1;
u 1 ME Stripe iLayout #2}

Stripe Count

NCCS.GOV

Slngle Shared File: Data Locallty and Continuity

 Data Locality

—Performance Is increased when portions of
a shared file are localized on a single drive.

e Data Continuity

— g ger

1 : F r [
rrormance. k

[NCCS.GOV
6 MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Scalability: File Per Process

« 128 MB per file and a 32 MB Transfer size

Flle Per Process
Write Performance

——l-\ -
\ =4=1MB Stripe

==32 MB Stripa

0 1000 2000 3000 4000 5000 €000 7000 8000 2000
Processes or Flles

[NCCS.GOV
6 MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Scalability: Single Shared File

« 32 MB per process, 32 MB Transfer size and Stripe size

Single Shared Flle
Write Performance

=$=FOSIX

=i=MPIIO

== HDF5

Write (MB/s)

== FOSIX (1 MB Stripe}

| 0 1000 2000 3000 4000 5000 6000 7000 2000 2000
Proccesses

NCCS.GOV

Scalablllty Summary

e Serial 1/0

—Is not scalable. Limited by single process which
performs 1/0.

* File per Process

—Limited at large process/file counts by:
* Metadata Operations

___ i -: el Pre——— O
o . a '. NN - q. allfa eiq a
- e - l;. .
]I

Buffered 1/O

o Advantages
— Aggregates smaller read/write operations ..

Into larger operations.

— Examples: OS Kernel Buffer, MPI-10
Collective Buffering

 Disadvantages

— Requires additional memory for the
buffer.

— Can tend to serialize 1/0O.

e Caution

— Frequent buffer flushes can adversely
affect performance. Go to Menu

¢G> NCCs.GoV

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Standard Output and Error

o Standard Ouput and Error streams are
effectively serial 1/0.

e Generally, the MPI launcher will aggregate
these requests. (Example: mpirun, mpiexec,
aprun, ibrun, etc..)

 Disable debugging messages when running In
production mode.

—“Hello, I’'m task 32000!”
—“Task 64000, made it through loop.”

Go to Menu

7$ NCCS.GOV

uI NATIONAL CENTER FOR COMPUTATIONAL SC

Binary Files and Endlanness

* Writing a big-endian binary file with compiler flag
byteswapio
File “XXXXXX'
Calls Megabytes Avg Size
Open 1
Write 5918150 23071.28062 4088

Close 1
Total 5918152 23071.28062 4088

. ertlng a little- endlan blnary

y l-|=ﬂ=- T [rr—

] |
e -
L 1

"J NCCS.GOV
Case Study: Parallel 1/0

e A particular code both reads and writes a 377 GB file.
Runs on 6000 cores.
— Total 1/0 volume (reads and writes) is 850 GB.
— Utilizes parallel HDF5

 Default Stripe settings: count 4, size 1M, index -1.
— 1800 s run time (~ 30 minutes) '

y NCCS.GOV Fage 100

i
. ,—xﬁ NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Case Study: Buffered I/O

» A post processing application writes a 1GB file.
» This occurs from one writer, but occurs in many small write operations. B
— Takes 1080 s (~ 18 minutes) to complete.

» |OBUF was utilized to intercept these writes with 64 MB buffers.
— Takes 4.5 s to complete. A 99.6% reduction in time. aq ﬁ

File "ssef_cn_2008052600f000" .
: Calls Seconds Megabytes Megabytes/sec Avg Size
Open e 0.001119 '
= : 0.247026 0.105957 0.428931 512
- 101 08927 00.098632 | 150:20 o

Page 101

Fault Tolerance

 Allow application to generate checkpoint files.
— Should be minimal in size.
— Should not be written too often.
o Keeping checkpoint files minimal
— Only incorporate unique information. Allow application to
calculate or derive appropriate information.
» Keeping the checkpoint generation low.

— The goal isn’t to keep all information at all times.
(checkpointing after every iteration.)

— Pick a write frequency which allows for a reasonable loss of
computation time.

Go to Menu

77$ NCCS.GOV

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Outline: Resources for Users

Page 102

— 1/O-Related References

— Getting Started

— Advanced Topics

_. NCCS.GOV Page 103

> '.: .~ MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Resources for Users: 1/0O-Related References

PVFS and PVFS2 (open source)

— www.parl.clemson.edu/pvfs/

— www.pvfs.org/pvfs2/

Lustre File System

— www.lustre.org

GPFS

— www.almaden.ibm.com/storagesystems/file systems/GPFS/

Lustre File System — White Paper October 2008

— http://www.sun.com/software/products/lustre/docs/lustrefilesystem wp.pdf
+ GPFS: Concepts, Planning, and Installation Guide
| http AWWW. [lboulder.ibm.com/epubs/pdf/a7604132. i %

a8 E e P B R W R

http://www.parl.clemson.edu/pvfs/
http://www.pvfs.org/pvfs2/
http://www.lustre.org/
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/
http://www.sun.com/software/products/lustre/docs/lustrefilesystem_wp.pdf
http://www.publib.boulder.ibm.com/epubs/pdf/a7604132.pbf
http://www.hdfgroup.org/HDF5/doc/H5.intro.html
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf

79 NCCS.GOV Page 104

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Resources for Users: Getting Started

e About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

* Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd craywkshp apr2008.pdf

* PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

——

-+ NCCS Training & Education — archives of NCCS workshops and seminar series,

ar C eferences b =

' . ’ B 1
|) ! = 1

'—..-

J/j NCCS.GOV Page 105

. MNATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Resources for Users: Advanced Topics

» Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

» Using Cray Performance Tools - CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging-
optimization/cray-pat/

. I/O Tlps_ for Cray XT4

NI:I::S EEIV i

-‘ NATIONAL CENTER FOR

Resources for Users: More Informatlon

e NCCS website

http://www.nccs.qgov/

e Cray Documentation

- http://docs.cray.com/

Ce————

=

	Using Parallel I/O
	Acknowledgements
	Outline
	Outline: Introduction
	Factors Which Affect I/O
	Typical Application I/O Patterns
	I/O Parallelism
	Types of Parallelism
	Limits of I/O
	I/O for Computational Science
	High Level Libraries
	I/O Middleware
	Parallel File System
	Outline: MPI-IO
	Introduction
	Common Ways of Doing I/O in Parallel Programs
	Pros and Cons of Sequential I/O
	Another Way
	What is Parallel I/O?
	Why Parallel I/O?
	Why is MPI a Good Setting for Parallel I/O?
	Using MPI for Simple IO
	Using MPI for Simple IO: Individual File Pointers
	Using MPI for Simple IO: Explicit Offsets
	Using MPI for Simple IO: Writing to a File
	Using MPI for Simple IO: Using File Views
	Using MPI for Simple IO: File Views
	Using MPI for Simple IO: File View Example
	Using MPI for Simple IO: MPI_File_set_view
	Using MPI for Simple IO: Fortran Example
	Using MPI for Simple IO: Fortran Example (continued)
	Using MPI for Simple IO: C++ Example
	Using MPI for Simple IO: C++ Example (continued)
	Using MPI for Simple IO: Other Ways to Write to a Shared File
	Noncontiguous I/O
	Example: Distributed Array Access
	A Simple Noncontiguous File View Example
	File View Code
	Collective I/O
	Collective I/O (continued)
	Under the Covers of MPI-IO
	Data Sieving
	Data Sieving Writes
	Two-Phase Collective I/O
	Two-Phase Writes
	Aggregation
	Accessing Arrays Stored in Files
	Using the “Distributed Array” (Darray) Datatype
	Darray (continued)
	A Word of Warning about Darray
	Using the Subarray Datatype
	 Subarray Datatype (continued)
	Local Array with Ghost Area�in Memory
	Local Array with Ghost Area
	Accessing Irregularly Distributed Arrays
	Accessing Irregularly Distributed Arrays (continued)
	Nonblocking I/O
	Split Collective I/O
	Shared File Pointers
	Outline: Parallel File System - Lustre
	Introduction
	Luster Concepts
	A Bigger Picture
	Lustre Striping
	File Parallelism
	Default Configuration
	lfs getstripe
	Modifications of the Defaults: setstripe
	Modifications of the Defaults: setstripe (continued)
	General Optimization Tips
	Lustre Best Practices for Users
	Lustre Best Practices for Users (continued…)
	Lustre Best Practices for Users (continued…)
	Lustre Best Practices for Users (continued…)
	Lustre Best Practices for Users (continued…)
	Lustre Best Practices for Users (continued…)
	Lustre Best Practices for Users (continued…)
	Lustre Best Practices for Developers
	Lustre Best Practices for Developers (continued…)
	Lustre Best Practices for Developers (continued…)
	Lustre Best Practices for Developers (continued…)
	Lustre Best Practices for Developers (continued…)
	Lustre Best Practices for Developers (continued…)
	Lustre Best Practices for Developers (continued…)
	Lustre Best Practices for Developers (continued…)
	Spokesperson – Serial I/O: importance of data locality
	Spokesperson – Serial I/O: importance of data continuity (cont.)
	Serial I/O: Data Locality and Continuity
	Single Shared File
	Single Shared File: Shared File Layouts
	Single Shared File: Results
	Single Shared File: Data Locality and Continuity
	Scalability: File Per Process
	Scalability: Single Shared File
	Scalability: Summary
	Buffered I/O
	Standard Output and Error
	Binary Files and Endianness
	Case Study: Parallel I/O
	Case Study: Buffered I/O
	Fault Tolerance
	Outline: Resources for Users
	Resources for Users: I/O-Related References
	Resources for Users: Getting Started
	Resources for Users: Advanced Topics
	Resources for Users: More Information

